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Abstract

An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of 
explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was 
initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many 
geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of 
continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model 
this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly 
simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite 
element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure 
interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been 
incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present 
results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in 
tandem.
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Introduction

A wide range of geological applications involve materials or systems that are discontinuous at fine enough scale of observation. 
While some systems may be intrinsically discontinuous, other discontinuous systems are best approximated by a continuum, a 
discontinuum, or a combination of the two, depending upon the specific information of interest. Continuum, mesh-based methods 
have been applied successfully to many problems in geophysics, and a continuum approximation may be adequate when sufficiently 
large length scales are considered—even if the geology includes fractures and faults.  However, a large class of problems exists 
where individual rock discontinuities must be taken into account. This includes problems whose structures of interest have sizes 
comparable with the block size, or when the structures experience loads that do no measurable damage to individual blocks, but 
deformation along material discontinuities still leads to structural failure. In these cases, a purely continuum, mesh-based treatment 
is usually inappropriate.  Field tests indicate that structural response can be dominated by the effect of preexisting fractures and 
faults in the rock mass. Consequently, accurate models of underground structures must take into account deformation across 
fractures and not simply within the intact portions of the rock mass.
The distinct element method (DEM) is naturally suited to simulating such systems because it can explicitly accommodate the blocky 
nature of natural rock masses. Cundall and Hart (1992) review a number of numerical techniques that have been developed to 
simulate the behavior of discontinuous systems using DEMs. The distinct element method (DEM) is naturally suited to simulating 
such systems because it can explicitly accommodate the blocky nature of natural rock masses. Cundall and Hart [1] review a 
number of numerical techniques that have been developed to simulate the behavior of discontinuous systems using DEMs.  In 
general, an explicit scheme is used to evolve the equations of motion of discrete bodies directly and the bodies may be rigid or 
deformable. Early approaches employed rigid disks or spheres with compliant contacts [2,3]. Cundall [4], Walton [5] and Cundall 
and Hart [6] developed two-dimensional DEMs that employed arbitrary polygons. Cundall [7] and Hart et al. [8] also developed 
fully three-dimensional DEMs composed of rigid or deformable polyhedral blocks with compliant contacts. The DEM has been 
applied to a wide range of problems in geomechanics (see Cundall [9] for a review of DEM simulations of granular material and 
rock). The Livermore Distinct Element Code (LDEC) was originally developed to implement DEM capabilities similar to 
Cundall[7] and Hart et al.[8] (see Morris et al., 2002). LDEC was subsequently used to simulate the response of underground 
tunnels to dynamic loading (Heuze and Morris, 20??).
Beyond the capabilities of the original DEM, many applications in geophysics require a combined continuum-discontinuum 
treatment for a complete solution. For example, projectile penetration into a rock or concrete target requires continuum-
discontinuum analysis in order to predict the formation and interaction of the fragments produced. Underground structures in jointed 
rock subjected to explosive loading can fail due to both rock motion along preexisting interfaces and fracture of the intact rock mass 
itself. In such applications, it is insufficient to simply predict whether or not the rock mass will fail—instead, the critical issues are 
how fracture and discontinuous interaction lead to the ultimate fate of rock fragments. Munjiza (2004) reviews the issues involved 
in developing combined DEM-FEM capabilities. To answer these questions, a continuum-discontinuum capability was developed 
by incorporating finite element analysis into LDEC (Morris et al., 2006). LDEC has also been extended to include a nodal cohesive 
element formulation that allows the study of fracture problems in the continuum-discontinuum setting with reduced mesh 
dependence (Block et al., 2007).
There are many application involving geologic materials where fluid-structure interaction is important. For example, simulating the 
near source region of an explosion in rock requires incorporating details of the coupling between the expanding products and the 
surrounding rock. To facilitate solution of these classes of problem, a Smooth Particle Hydrodynamics (SPH) capability was 
incorporated into LDEC.
The following sections document the treatments for geologic media and fluid within LDEC in more detail. This is followed by a 
number of verification problems which test combinations of the capabilities within LDEC. We present simulations of fracture and 
fragmentation for the case of a shock wave impacting an underground tunnel system which highlights the influence of persistent and 
non-persistent joint sets on failure in rock. Results of studies investigating impacts into boulder fields and waves impinging upon a 
breakwater are also presented.

Treatment of geologic media using LDEC

In the simplest case, the Livermore Distinct Element Code can be run in a rigid-block mode, so that all deformation in the system is 
lumped into the contacts. The most complicated aspect of the code is then related to contact detection. In general, the equations of 
motion of the elements are determined in a standard manner by integrating vector equations for both the center of mass of each 
element and an orthonormal vector triad that determines its absolute orientation. Contact detection monitors how the connectivity 



changes as a result of relative block motion. The Lagrangian nature of the DEM also simplifies tracking of material properties as 
blocks move, and it is possible to guarantee exact conservation of linear and angular momentum throughout the computation.
Deformation within the individual blocks is often introduced into DEM formulations by using additional standard continuum 
discretization, such as finite differences or finite elements. In Morris et al. (2004), it was observed that the theory of a Cosserat point 
(Rubin, 1995, 2000) can model each element as a homogenously deformable continuum. A Cosserat point describes the dynamic 
response of the polyhedral rock block by enforcing a balance of linear momentum to determine the motion of the center of mass, as 
well as three vector balance laws of director momentum to determine a triad of deformable vectors, which model both the 
orientation of the element and its deformation. The response of the deformable polyhedral block is modelled explicitly using the 
standard nonlinear constitutive equations that characterize the original three-dimensional material. Consequently, the constitutive 
equations for the contact forces at the joints become pure measures of the mechanics of joints. However, this approach is 
inappropriate for problems whose length scales of interest (such as a tunnel diameter) are only slightly greater than the block size. 
This deficiency was overcome by internally discretizing the polyhedral blocks with a collection of smaller tetrahedral elements. The 
numerical solution procedure depends on nodal balance laws to determine the motion of the four nodes of each tetrahedral element, 
similar to that described above for the motion of blocks.  In general, the accelerations of the nodes of a particular element are 
coupled with the nodes of the neighbouring elements.  However, the director inertia coefficients in the theory of a Cosserat point 
can be specified so that these equations become uncoupled.  This form corresponds to a lumped mass assumption and is particularly 
convenient for wave propagation problems using explicit integration schemes because it does not require the inversion of a mass 
matrix.
In continuum regions, where the nodes of neighbouring elements are forced to remain common (i.e., unbreakable), this meshed 
based Cosserat point formulation is basically the same as standard finite element models (FEM) that use homogeneously deformable 
tetrahedral elements. In this case, the computational effort in LDEC is significantly reduced: many nodes are shared and there is no 
need for contact detection on shared element surfaces. While standard finite element formulations are based on shape functions and 
weighting functions, the latest version of LDEC utilizes balance laws for the directors of each Cosserat point (associated with the 
positions of the nodes of the tetrahedral elements). LDEC can be run simultaneously in DEM and FEM-like modes, dynamically 
blending continuum and discrete regions, as necessary.
It is well known that the simulated fracture propagation rate is highly mesh dependent unless steps are taken to reduce the influence 
of element size. For simulation of crack growth at the meso- and macro-scale, a cohesive elements is often introduced into a finite 
element mesh to capture the micromechanical processes leading to material failure. LDEC has been extended to include a nodal 
cohesive element formulation that allows the study of fracture problems in the continuum-discontinuum setting with reduced mesh 
dependence (Block et al., 2007).  
Although versatile, finite element discretization, with the option of dynamically breaking the mesh introduces significant 
computational expense. In addition, the current implementation in LDEC restricts crack orientations to follow mesh interfaces 
which artificially constrains failure propagation, especially for low resolution meshes. Such an approach is unsuitable for 
applications involving very large numbers of distinct objects undergoing brittle fracture, such as impact into a pile of boulders. For 
this class of problem, we introduce a constitutive model of fracture utilizing the average stress within each body in the problem 
using, for example, a von Mises failure criterion. This failure criterion determines whether fracture occurs in this model. Once 
fracture has been identified, the body is instantaneously split along the plane of greatest tensile principal stress, as determined 
through the Eigenvectors of the stress tensor. If the uniformly deformable, Cosserat blocks are employed, each block already has an 
estimate of its internal stress state. If the rigid block formulation is used, a stress estimate may be obtained from the Cosserat 
formulation by considering the limit of instantaneous equilibrium between the internal state of the block and the applied forces. We 
use a rigid body stress relation based on the homogeneous deformation of a body in the limit of rigidity.  

Smooth Particle Hydrodynamics

Smooth particle hydrodynamics (Monaghan, 1992) is a Lagrangian CFD technique that has found a wide range of applications, 
including free-surface flows (Monaghan, 1994) and elasticity (Gray et al, 2001). It has also been applied to low Reynolds number 
flows (Morris et al, 1997), including surface tension (Morris, 2000).
Using SPH a fluid is represented by particles, typically of fixed mass, which follow the fluid motion, advect contact discontinuities, 
preserve Galilean invariance, and reduce computational diffusion of various quantities including momentum. The equations
governing the evolution of the fluid become expressions for interparticle forces and fluxes when written in SPH form. The 
Lagrangian nature of SPH facilitates coupling to other Lagrangian techniques, such as the DEM.
Using SPH a fluid is represented by particles, typically of fixed mass, which follow the fluid motion, advect contact discontinuities, 
preserve Galilean invariance, and reduce computational diffusion of various quantities including momentum. The equations 
governing the evolution of the fluid become expressions for interparticle forces and fluxes when written in SPH form. Using the 
standard approach to SPH [1] the particles (which may also be regarded as interpolation points) move with the local fluid velocity. 



Each particle carries mass, velocity v, and other fluid quantities specific to a given problem. The equations governing the evolution 
of fluid quantities are expressed as summation interpolants using a kernel function with smoothing length.  
To simulate fully-coupled interactions between fluids and solids we need to introduce a force between the SPH particles and the 
DEM polyhedral blocks. LDEC supports two approaches to this coupling: A penalty method and a ghost particle approach.
Using the penalty method, a signed distance, D, is calculated for all SPH particles in the vicinity of a given block above each face of 
the block. A linear force is applied to the particle that is proportional to the distance the particle penetrates within a chosen stand-off 
distance, D0, of the block:

( )nF 0DDK BCBC −= EQ 12
The stiffness of the penalty force should be scaled according to the properties of the SPH particle:
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Here, A is a non-dimensional constant that controls the amount of penetration of the particles within the stand-off distance D0 and n
is the normal to the block. The particle mass, soundspeed and smoothing length are denoted by m , c and h respectively.
The ghost particle approach proceeds by initializing the problem with SPH particles within the solid and fluid regions throughout 
the computational domain. SPH particles that are initialized inside a solid become “bound” to that solid and are used to provide 
boundary conditions on the unbound, surrounding SPH particles. This approach has been used successfully to simulate fluid-solid 
coupling in porous media with SPH (Morris et al, 1997).

Verification simulations

Simulation of a bursting dam

To verify that the LDEC implementation of SPH is consistent with previous studies we reproduced the bursting dam simulation 
performed by Monaghan [23]. This is a two-dimensional test where initial conditions correspond to a 25m by 25m square cross-
sectioned body of water, bounded on its left and from below by free-slip boundaries. The water is allowed to flow in response to the 
forces of gravity.  Figure 2 shows the flow simulated by LDEC’s SPH capability using an initial lattice of particles with 0.5m 
spacing.  The free-slip boundaries were modelled using lines of 1m sized rigid LDEC blocks.  Figure 3 shows a comparison 
between our simulations, those of Monaghan [23] and experiments performed by Martin and Noyce [32]. Our results are in good 
agreement, confirming the implementation of SPH and the free-slip block-SPH particle force in LDEC.

Explosion in limestone

To verify the implementation of SPH and coupling with the FEM capability under dynamic loading in LDEC we simulated a 
spherical explosion in Limestone and compared results with an established Eulerian adaptive mesh code, GEODYN (Lomov et al., 
2001). The computational domain consisted of a 19.8mm radius sphere of CompB explosive embedded in a 100mm radius sphere of 
Limestone. At t=0, the entire volume of explosive is detonated. The GEODYN code was run in 1-dimensional mode, with a cell size 
of 1mm.  The LDEC code was run in 3-D mode, with the Limestone discretized into tetrahedral elements of side length 
approximately 10mm. The high explosive in the LDEC simulation was represented by SPH particles initially placed on a cubic 
lattice of spacing 2mm. The coupling between solid and gas was achieved by using the penalty approach implementation. Figure 1 
shows a comparison between the LDEC simulation and GEODYN at several distances from the source. The two methods agree well 
in terms of peak velocity and waveform. These results verify the LDEC treatment for the expanding gas and treatment of the 
coupling between the gas and solid.

Dynamic loading of underground structures

Simulations of an underground facility in heavily fractured rock

A series of simulations were performed with LDEC to model the effects of a surface explosion (and the subsequent shock wave) on 
an underground tunnel system surrounded by jointed rock. The solution domain spanned 60 m in each direction and encapsulated a 
generic facility that included several tunnel sections and a lift shaft (see Figure 5).  Several geological models were considered as 
part of this study. In particular, the behaviour of regular, persistent joints was compared to the effect of non-persistent (i.e., 
randomized) joints in the surrounding rock. The rigid block capability was used to model hard rock and as is appropriate for hard 
rock where joint geometry dominates structural response. Figure 6 shows an example of the randomized jointing present in the non-



persistent model geology. In both cases discussed here, the joint patterns resulted in typical block sizes of 30 cm. Consequently, 
each model contained approximately 8 million individual polyhedral rock blocks and approximately 100 million contact elements, 
making these the largest simulations of this type performed to date. The facilities were subjected to loading corresponding to a one 
kiloton detonation at the surface 50 m above. For this study, waveforms approximating the groundshock were applied as boundary 
conditions to the computational domain. This approach assumes that the loading of the computational domain can be uncoupled 
from the response of the facility itself. In contrast, the following section discusses and example where the detonation and tunnel 
response are more directly coupled.

Figure 7 compares the velocity fields of the two simulations at 30 ms. Results obtained for the regular, persistent joint set 
and irregular, non-persistent model differed in several key ways:
The regular model exhibited strong anisotropy. Since the joints are weak under shear loading, the regular, persistent joint sets tend 
to channel the waveform, resulting in variations in wavespeed with direction of propagation.
The irregular model exhibited higher attenuation. Again, because the joints are weak under shear loading, the irregular joint 
structure results in more effective plastic deformation on the joints and, consequently, more attenuation.
Persistent joints allow shear motion along the entire length of the computational domain, resulting in large “chimney” effects above 
collapsed tunnels sections.
The irregular model resulted in more diffraction of waves around cavities in the rock mass.
Figure 8 shows two snapshots of the collapse of the largest room within the facility using the non-persistent joint set simulation. 
While the largest room within the facility has totally collapsed, the narrowest access tunnels experienced minimal damage. The 
midsize tunnels show a range of damage, with most damage occurring in tunnel sections that contain a junction with another tunnel 
or lift shaft. This behavior is consistent with the idea that tunnel junctions compromise tunnel strength.

Simulation of a tunnel in infrequently jointed rock

The initial applications of LDEC typically involved a tunnel in heavily jointed, hard rock, where the tunnel diameter was spanned 
by many blocks (Morris et al. 2002, 2004). It is then appropriate to simulate the rock mass using a “tight” structure consisting of 
polyhedral blocks that are either rigid or homogenously deformable (with deformable points of contact in either case) such as in the 
previous section.  In contrast, this section considers the response of a tunnel to a detonation, where the joints are sufficiently 
infrequent so that the predominant failure mechanism is block breakage rather than intact rock displacement. In addition, this 
problem includes an explosion sufficiently close to the tunnel that it cannot be effectively modelled by a decoupled boundary 
condition. The detonation is simulated using SPH using the penalty approach for coupling. Consequently, this problem demonstrates
the fully-coupled, SPH-FEM-DEM capability of LDEC.
This demonstration simulation (see Figure 2) is performed in two dimensions. The geology consists of blocks of limestone, 
measuring 1.83 m wide, by 0.30 m high, surrounding a tunnel measuring 1.23 m by 1.23 m, located 1 m below the surface. The 
tunnel is subjected to loading from a cylinder of CompB high explosive located near the tunnel of radius 0.25m, centered 0.5 m 
above the ground. The calculation was performed in two stages. Initially, LDEC was run with deformable blocks of limestone 
internally discretized into 10 cm tetrahedral elements. In this mode of operation, the time step is quite short so that deformation 
within the 10 cm elements can be captured. After 1 ms, the LDEC calculation was switched over to rigid-block mode, which ignores 
internal modes of the elements, leading to an increase in the size of the time steps. This allows us to investigate the flow of rubble 
into the tunnel over longer time scales. Subsequent panels in Figure 2 depict a portion of the roof collapsing into the tunnel.

Impact into a pile of boulders

The design of munitions that can withstand impact into a target with heterogeneities of similar length scale as the projectile has 
proven to be a persistent and difficult challenge. The stresses induced by these types of impact events are often highly 
discontinuous, producing bending moments and torsion on the projectile which can exceed design specifications. The situation is 
complicated by the limited experimental and numerical tools available to improve the design constraints. Experiments are often 
plagued by challenges, including characterization of the initial conditions, monitoring of the event at sufficient temporal and spatial 
resolutions, and analysis, which is confounded by the interaction of several chained stochastic impact events before projectile fate is 
determinate. Simulation tools can overcome these limitations, but they introduce other constraints such as computational tractability 
(run time and processor availability) and physical model fidelity. Also, the types of simulation approaches that may be effectively 
applied to this problem are constrained by the discontinuous and anisotropic nature of the medium; the relatively low ratio of 
resolution length to discontinuity length; and the stochastic nature of the outcome. These constraints, for instance, preclude the use 
of traditional finite element approaches and make many discontinuous mechanics approaches too costly to run.
Distinct element and combined distinct-finite element methods are designed to address systems where the discontinuities dominate 
the behavior of the system. DEM approaches [1] have been used in the past to analyze impact events into boulder screens; however, 



these analyses were limited to 2-D approximations. The study detailed here analyzes the impact of a projectile into a boulder screen 
using a 3-D DEM representation of the boulder field with fracture criteria based on plane of maximum tensile stress combined with 
an empirical model of contact pulverization derived from experimental results [2].
Sensitivity studies indicate the final orientation and position of the projectile are insensitive to the user-defined proportionality 
constant. Because the resultant fracture is two-dimensional, the contact is poorly defined at the interface of the projectile and 
boulder. This results in indeterminacy of the resulting trajectory of the produced fragments. To overcome this problem, an empirical 
model of material comminution (pulverization) at the impact point based on the experimental results of Kumano and Goldsmith [2]
has been introduced. The results indicate that for projectiles with flat and spherical tips the equivalent cone angle is marginally 
higher (i.e., the ratio of depth of penetration to crater volume is lower) than for those with conical tips; however, this small deviation 
(distribution median of  59○ versus 61○) does not impact the final distribution of results.  A single assumed angle of 60○ is used 
throughout the simulation for determining the conical comminuted region at impact. Using this angle, the fracture algorithm is 
amended to fragment the body into quadrants with both split planes oriented along the axis of most tensile principal stress and 
parallel to the secondary and tertiary principal tensile stress directions, respectively. The split is initiated at the point of the largest 
magnitude force on the body, and the material at this point is excavated to create the equivalent of a 60○ circular cone. The 
application of a small area load at the point of impact also increases the effective stress at the impact point, requiring an adjustment 
of the failure stress criterion to account for the increased stress at the impact point. Because the exact geometry of the excavated 
area is unknown, and the stress concentration factor is sensitive to small changes in geometry, a parametric approach was adopted to 
determine an effective stress concentration factor. An illustration of the algorithm as applied to a single brittle, granitic block is 
shown in Figure 3.
As shown in Figure 4, the system is initialized using a randomly-oriented set of rigid cuboids where the dimensions of the cuboids 
are sampled from a distribution corresponding to those reported in a set of experimental studies [8, 9]. The positions of the elements 
are initialized on a hexagonal grid with small stochastic deviations from the exact positions. The cuboids are allowed to settle into a 
trough of trapezoidal cross-section until the residual kinetic energy reaches a threshold at which point the remaining granular 
temperature is removed. This procedure is reproduced for 10 different realizations of the initial conditions.
The front wall is removed, and the projectile is given an initial velocity and positioned at the impact point. A characteristic 
simulation progression is shown in Figure 5 for a slice through the fire line and where the normal to the view plane is perpendicular 
to the gravity vector and the fire line. The blocks are rendered translucently to illustrate the flight path and relative density of the 
material. The impact event is characterized by a wide distribution in the outcomes for different samples of randomly oriented blocks 
with the same initial conditions in the projectile. The fate of the projectile at different points in time (pre-impact, directly after 
impact, and final state) are shown in Figure 6, showing a clear cone of path divergence as a function of path length. 
The tortuosity of the projectile path is also an interesting quantity, as projectile erosion and damage is also influenced by the path 
length traveled through the material. The boulder size relative to the projectile can have a pronounced effect on the ballistic 
efficiency of the projectile. For the large boulder case, it can be seen in Figure 7 that despite the relatively comparable bulk densities 
of the large and small boulder systems, the efficiency of the large boulder screen is far in excess of that of the small boulder screen.
These studies illustrate the power of using the LDEC combined DEM/FEM code for predicting distributions of outcomes to 
projectile impact events in granular materials. Not only can these types of methods provide insight into the basic micromechanics of 
impact into granular materials, but the fast fracture algorithm detailed here combined with the rigid body stress failure criterion can 
also rapidly provide error bounds for ballistic efficiency predictions for projectiles, with the predictions calibrated for specific 
particulate materials.
Despite the low fidelity of the physical approximations used, the distribution of results predicted in this study includes the results 
found in earlier experimental studies [8, 9].

Coupled fluid-solid simulation: Wave impinging upon a breakwater

Breakwaters are structures intended to dissipate wave energy in order to protect harbours and coastal structures. Latham et al. 
(elsewhere in this issue) provide a detailed description of several designs for breakwaters using both natural rock and precast 
concrete armour units. The challenge is to predict the effectiveness of such structures against infrequent, yet potentially catastrophic 
events such as a 100-year storm. A complete understanding of the performance of these structures must include the possibility of 
relative motion between the breakwater units and estimation of the internal stress within each unit, including the possibility of unit 
failure. Latham et al. present an approach for simulating this coupled problem using an Eulerian flow code to simulate the water and 
Lagrangian DEM to simulate the armour units. The benefit of such an approach is that the methods employed are utilized for the 
portions of the problem that play to their strengths. An Eulerian CFD code is naturally suited to simulating the large deformations 
associated with wave motion and a DEM/FEM capability is appropriate for simulating the motion and potential failure of the pile of 
armour units. The difficulty is that coupling Euler-Lagrange capabilities inevitably requires significant algorithmic complexity. In 
contrast, coupling Lagrangian capabilities is relatively simple from an algorithmic perspective. The challenge is that the Lagrangian 



flow solver employed must be immune to mesh tangling. Despite being more difficult to implement, a fully coupled Euler-Lagrange 
representation of this problem has distinct advantages. In particular, the Euler component provides a framework for adaptive 
meshing, permitting a more accurate and potentially more efficient solution of the fluid motion than a fixed resolution SPH 
calculation would.
We present preliminary calculations of a wave striking a simple breakwater constructed of rigid DEM cubic blocks. The fluid is 
represented by SPH in order to avoid mesh tangling using the techniques described previously. In contrast with Latham et al., this 
study did not include the possibility of unit breakage, however, that could be handled using the FEM/DEM capability in LDEC 
demonstrated in previous sections. Figure ?? shows the results of a simulation of a breakwater using LDEC. The initial boulder pile 
was created by dropping a number of cubic blocks onto a flat surface bounded with rigid walls on four sides. Subsequently, the 
water was introduced into the simulation and coupling to the blocks was achieved by using the ghost particle method described 
previously. After several seconds of settling, a large wave was introduced from the right. The wave impinges upon the breakwater 
and displaces several blocks from the top of the pile, demonstrating the fully coupled nature of the simulation.

Conclusions

Previous work has demonstrated that the Livermore Distinct Element Code is capable of simulating the dynamic response of 
elaborate, underground facilities and tunnel systems to shock-wave loading (Morris et al, 2006; Heuze and Morris, 2007). Such 
large-scale studies allow the investigation of the interaction between different parts of the facility, and the study of how these 
interactions lead to tunnel collapse and overall failure. The results highlight the importance of including realistic irregular, non-
persistent joint sets. Geologies that were modeled using rigid blocks with deformable contacts and non-persistent jointing were 
found to withstand significantly more shear deformation than would be predicted using regular, fully persistant joint sets. Moreover, 
discretizing the blocks internally with tetrahedral elements increases the potential accuracy of large-deformation simulations, 
especially in cases where the predominant failure mechanism is block breakage rather than intact rock displacement. The addition of 
an SPH capability allows us to simulate detonation close to a tunnel opening, including fracture and fragmentation.
In addition, this paper has demonstrated the internal discretization of the LDEC blocks into tetrahedral elements for cases where the 
predominant failure mechanism is block breakage rather than intact rock displacement. The addition of an SPH capability allows us 
to simulate detonation close to a tunnel opening, including fracture and fragmentation.
The current version of LDEC provides simultaneous DEM and FEM-like domain partitioning, as well as the possibility of 
converting between the two modes dynamically. 
EXPAND UPON APPLICATIONS
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Figure 2: Results of LDEC SPH verification simulation of a 2-dimensional dam burst at 0.0, 0.1, 0.2 and 0.3 seconds.



Figure 3: Comparison of a LDEC SPH verification simulation of a 2-dimensional dam burst with experiment and a previous SPH 
calculation. The LDEC SPH capability is in close agreement with the work of Monaghan [Error! Reference source not found.].



Figure 1 Comparison of a 3-D LDEC simulation of a spherical detonation in Limestone with a high resolution 1-D simulation using 
GEODYN



Figure 5: Generic facility model including several tunnel sections and a lift shaft. The facility spans 60m and is buried 50m below 
the surface.



Figure 6: The non-persistent randomized geology in the vicinity of one of the tunnels. The near-horizontal joint set persists through 
the model. However, joint sets in the near vertical direction persist only through several consecutive layers at a time.



Figure 7: The velocity magnitude for the two models at 30ms. The non-persistent, randomized geology model (left) and the regular 
jointed model (right) exhibit fundamentally different responses to loading.



Figure 8: Snapshots of the largest room at 0 ms and 200 ms, using the non-persistent joint set simulation. The simulation predicts 
that this large room within the facility would completely collapse under the applied loading.



 
Figure 2: The infrequently jointed model is displayed at far left, with individual blocks colored randomly to emphasize joint 
locations. The simulation results at 1 ms (middle) show that the initially intact blocks above the tunnel have fragmented. The 
simulation results at 1 ms (middle) show that the initially intact blocks above the tunnel have fragmented. The simulation at and 100 
ms (far right), indicates that a portion of the roof collapses into the tunnel.



Figure 3: Fragmentation process evolution for impact of projectile into boulder



Figure 4: Initialization of the problem domain



Figure 5: Impact of projectile into a simulated boulder field



Figure 6: Fate of projectile overlaid for different realizations of the randomly oriented and settled boulder screen for the case of 
large boulders



Figure 7: Projectile path projected onto the plane with normal perpendicular to the fire line and gravity vector for different 
realizations of the randomly oriented and settled boulder screen for the large boulder (left) and small boulder (right) systems.



Figure ???: Original arrangement of cubic breakwater units within the computational domain.



Figure ???: A sequence of snapshots showing the side-view of an LDEC simulation of a wave impinging upon the breakwater 
configuration depicted in Figure ???. The wave impact upon the breakwater results in boulders being displaced from the top of the 
structure. Consequently, the height of the breakwater is reduced.
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